skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mercado-Reyes, Joel A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism‐resistant xylem show a peaking‐type (p‐type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre‐stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p‐type ABA dynamics in the coniferCallitris rhomboideaand the highly drought‐resistant angiospermUmbellularia californica. We measured leaf water potentials (Ψl), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non‐fatal drought. Both species displayed a p‐type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p‐type species may be conserved across embolism‐resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation asΨlbecomes more negative than turgor loss. 
    more » « less
  2. Abstract The phytohormone abscisic acid (ABA) plays a major role in closing the stomata of angiosperms. However, recent reports of some angiosperm species having a peaking-type ABA dynamic, in which under extreme drought ABA levels decline to pre-stressed levels, raises the possibility that passive stomatal closure by leaf water status alone can occur in species from this lineage. To test this hypothesis, we conducted instantaneous rehydration experiments in the peaking-type species Umbellularia californica through a long-term drought, in which ABA levels declined to pre-stress levels, yet stomata remain closed. We found that when ABA levels were lowest during extreme drought, stomata reopen rapidly to maximum rates of gas exchange on instantaneous rehydration, suggesting that the stomata of U. californica were passively closed by leaf water status alone. This contrasts with leaves early in drought, in which ABA levels were highest and stomata did not reopen on instantaneous rehydration. The transition from ABA-driven stomatal closure to passively driven stomatal closure as drought progresses in this species occurs at very low water potentials facilitated by highly embolism-resistant xylem. These results have important implications for understanding stomatal control during drought in angiosperms. 
    more » « less